
Read Aloud/Explain the Code
Step-By-Step, to Yourself or to
Someone Else
Have you ever read something you wrote down outloud and discovered
grammatical or punctuation errors? Reading through your code sequence
aloud step-by-step can produce similar results. As you are reading your code
aloud, think from the computer’s perspective. Are you including steps that
aren’t actually present? Are your instructions clear? If something needs to be
reset each time the program has run, have you included those instructions in
your sequence?

Break Long Sequences Apart
into Smaller Pieces
A good practice is to develop your program incrementally: code a bit, test, then code
a bit more. Then, if a bug appears, you can more easily identify where it was
introduced (likely, in the last piece you added). If your sequence is already written,
however, you can still use this idea to debug by breaking long sequences apart.

Separate the blocks and click on each individually to see what it does, or break a long
sequence apart into smaller sequences of two to four blocks, in order to narrow down
where the bug appears. This process is called decomposition, which is when you
break down a complex problem or system into smaller parts. Smaller parts are often
more manageable to edit and tinker with, and easier to understand.

Click on a single block or sequence of blocks in the script area to run just that piece
of the program. When you know a piece is working as expected, add it back into the
main program and move to the next piece to test.

Add Temporary Waits to Slow
Down the Action
The computer can run your program so quickly that you may not be able to
see all the action with your eyes. Add in temporary “wait” or “wait until (key
pressed)” blocks to slow down the sequence and give you time to process if
a piece worked or not. Once you know the code is working, you can remove
these waits.

Add Temporary Sounds at Key
Checkpoints
Similar to the strategy of adding temporary waits/pauses in your code, identify
key points in your sequence and add a different funny sound to play before it
runs using the “play until done” block. If a sound doesn’t play, you know the
bug most likely occurs before the sound. Or if a sound plays and then the bug
occurs, you know the bug most likely occurs after the sound. Once you know
the code is working, you can remove these sounds.

Tinker with the Block Order
Try adjusting the order/the sequence of the blocks. Ask yourself: What needs
to happen first? What needs to happen second? Do values or sprites need to
reset before the next piece of the code runs?

Try using blocks inside a loop or conditional statement, versus outside of a
loop or conditional statement. It can make a big difference!

Considering Timing and
Parallelism
Do you have multiple events trying to run at the same time? It may be
unnoticeable to your eye, but it takes a small amount of time to run each code
block. If two sequences are programmed to start at the same time (for instance,
you are using several green flag blocks), you can get unpredictable behavior if you
don’t establish some timing and order through waits, broadcasts, or user
interaction (like clicking or key presses).

Say one code sequence resets a variable, like the score, when the green flag is
clicked. But a second sequence that also runs as soon as the green flag is
clicked and is set to check that score and do something based on the value.
Adding a small wait to the second sequence checking the score allows the
program to reset the score before the second sequence starts checking the
score, which will result in greater accuracy/less chance of unexpected failure.

Is There a Similar but Different
Block Option?
Some blocks look similar but can behave differently, or be more appropriate
to use in different contexts. “Set” versus “change” or “play until done” vs
“start”... Try using a similar block in place of what you have and see if there is
a difference to the outcome.

Check the Values
Are you using variables (either custom variables or provided variables like “answer,” “x
position,” “direction”...) in a code sequence? Do you know what the value is at the
moment the code sequence is being run?
If you need to know the value to determine whether or not a sequence is functioning
as expected, there are a few ways to find the value:
● If there is a checkbox next to the variable in the block palette, ensure it is checked

off to show it on the stage. You can uncheck to hide it again after debugging.
● Place the variable inside a “say” block to have your sprite report the value. If you

put the “say” block inside a “forever” loop, it should continually report the updated
value as it changes.

● Click on the variable in the block pallet or script area to get a one-time report of
the value.

Also ask yourself: Do/should all the sprites control a variable, or should only one sprite
have control? Where is the variable reset? Where is it changed?

Is Your Code Sequence in the
Right Place?
Is your sequence associated with the correct sprite, or the sprite versus the
backdrop? Check which sprite is highlighted in the sprite area when looking at
your code, or which image is shown in the upper-right corner of the script area.
Or is the backdrop highlighted?

If you need to move your code to another sprite or backdrop because you
accidentally wrote it in the wrong place, you can drag-and-drop a code sequence
onto another by hovering over the correct one in the sprite or backdrop area and
releasing when you see it wiggle. Or drag the code sequence to your backpack*,
click on the correct sprite or backdrop, and then drag it up to that script area.
Just don’t forget to delete the code where it was written incorrectly once you’ve
ensured it has been moved. *Note: you logged in to access the backpack.

Comment Your Code
Adding comments to your code not only helps others looking at your code
understand how it is working, but explaining your code to an audience can
strengthen your understanding of what you’ve created. Writing comments can
help you spot any errors, or help you identify any unnecessary extra code that
can be removed. It can also help you remember how your code works when
you come back to it later. Use everyday language to explain what a block, or
small sequence of blocks, does.

Take A Break, Step Away
Sometimes, spending too much time focused on an issue can be
counterproductive. Frustration can make it hard to think clearly. Taking a
break and physically stepping away from the screen could help you clear your
mind. After some rest, focusing on something else, or getting some water,
you can approach the debugging with fresh eyes. Start from the beginning,
try one of the other strategies, and try thinking about the problem from a
different perspective.

Ask for Help
If you’ve tried the other strategies and are still stuck, you can ask for help
from a peer or an activity facilitator. If you enjoy participating in the Scratch
online community, you could also share your project, ask for help debugging
in a comment or project notes, and then other Scratchers can see inside your
project to examine your code and help you debug.

Ask one to three people to try your code, as different people may have
different perspectives or solutions. There is often more than one way to solve
a problem, so you can determine which is the most efficient way for your
program, which gets the closest to accomplishing your goal, and which
solution you understand best and can reproduce.

